skip to main content


Search for: All records

Creators/Authors contains: "Srinivasan, Kartik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate Kerr-mediated all-optical synchronization of a dissipative Kerr solition with an external reference laser in a single microring resonator. It enables passive stability transfer and frequency division for optical clock metrology applications.

     
    more » « less
  2. We present a two-dimensional frequency comb, with distinct fixed repetition-rates in both the azimuthal mode dimension and an orthogonal dimension parametrized by the angular phase-velocity. We experimental demonstrate it using a single integrated microring bichromatically pumped.

     
    more » « less
  3. Abstract

    The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.

     
    more » « less
  4. Microresonator frequency combs, or microcombs, have gained wide appeal for their rich nonlinear physics and wide range of applications. Stoichiometric silicon nitride films grown via low-pressure chemical vapor deposition (LPCVD), in particular, are widely used in chip-integrated Kerr microcombs. Critical to such devices is the ability to control the microresonator dispersion, which has contributions from both material refractive index dispersion and geometric confinement. Here, we show that modifications to the ratio of the gaseous precursors in LPCVD growth have a significant impact on material dispersion and hence the overall microresonator dispersion. In contrast to the many efforts focused on comparisons between Si-rich films and stoichiometric (Si3N4) films, here, we focus on films whose precursor gas ratios should nominally place them in the stoichiometric regime. We further show that microresonator geometric dispersion can be tuned to compensate for changes in the material dispersion.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)